An approach to forecasting QoS attributes of web services based on ARIMA and GARCH models


Availability of several web services having a similar functionality has led to using quality of service (QoS) attributes to support services selection and management. To improve these operations and be performed proactively, time series ARIMA models have been used to forecast the future QoS values. However, the problem is that in this extremely dynamic context the observed QoS measures are characterized by a high volatility and time-varying variation to the extent that existing ARIMA models cannot guarantee accurate QoS forecasting where these models are based on a homogeneity (constant variation over time) assumption, which can introduce critical problems such as proactively selecting a wrong service and triggering unrequired adaptations and thus leading to follow-up failures and increased costs. To address this limitation, we propose a forecasting approach that integrates ARIMA and GARCH models to be able to capture the QoS attributes’ volatility and provide accurate forecasts. Using QoS datasets of real-world web services we evaluate the accuracy and performance aspects of the proposed approach.

In Proceedings of IEEE 19th International Conference on Web Services (ICWS)
Ayman A. Amin
Associate Professor of Statistics